Image de Google Jackets
Vue normale Vue MARC vue ISBD

The brain as a complex network: assessment of EEG-based functional connectivity patterns in patients with childhood absence epilepsy

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2020. Sujet(s) : Ressources en ligne : Abrégé : The human brain is increasingly seen as a dynamic neural system, the function of which relies on a diverse set of connections between brain regions. To assess these complex dynamical interactions, formalism of complex networks was suggested as one of the most promising tools to offer new insight into the brain's structural and functional organization, with a potential also for clinical implications. Irrespective of the brain mapping technique, modern network approaches have revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, and the presence of hubs. Moreover, the utility of these approaches, to gain a better understanding of neurological diseases, is of great interest. In the present contribution, we first describe the basic network measures and how the brain networks are constructed on the basis of brain activity data in order to introduce clinical neurologists to this new theoretical paradigm. We then demonstrate how network formalism can be used to detect changes in EEG-based functional connectivity patterns in six paediatric patients with childhood absence epilepsy. Notably, our results do not only indicate enhanced synchronicity during epileptic episodes but also reveal specific spatial changes in the electrical activity of the brain. We argue that the network-based evaluation of functional brain networks can provide clinicians with more detailed insight into the activity of a pathological brain and can also be regarded as a support for objective diagnosis and treatment for various neurological diseases.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

46

The human brain is increasingly seen as a dynamic neural system, the function of which relies on a diverse set of connections between brain regions. To assess these complex dynamical interactions, formalism of complex networks was suggested as one of the most promising tools to offer new insight into the brain's structural and functional organization, with a potential also for clinical implications. Irrespective of the brain mapping technique, modern network approaches have revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, and the presence of hubs. Moreover, the utility of these approaches, to gain a better understanding of neurological diseases, is of great interest. In the present contribution, we first describe the basic network measures and how the brain networks are constructed on the basis of brain activity data in order to introduce clinical neurologists to this new theoretical paradigm. We then demonstrate how network formalism can be used to detect changes in EEG-based functional connectivity patterns in six paediatric patients with childhood absence epilepsy. Notably, our results do not only indicate enhanced synchronicity during epileptic episodes but also reveal specific spatial changes in the electrical activity of the brain. We argue that the network-based evaluation of functional brain networks can provide clinicians with more detailed insight into the activity of a pathological brain and can also be regarded as a support for objective diagnosis and treatment for various neurological diseases.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025