Image de Google Jackets
Vue normale Vue MARC vue ISBD

Valproate attenuates hypertonic glycerol-induced rhabdomyolysis and acute kidney injury

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2021. Sujet(s) : Ressources en ligne : Abrégé : Background and aim. – The current study investigated the effects of treatment with 300 mg/kg valproic acid on rhabdomyolysis and acute kidney injury induced by intramuscular injection of hypertonic glycerol in rats.Methods. – Four groups of male wistar rats: control and hypertonic glycerol, valproic acid and valproic acid + hypertonic glycerol treated groups were used. Blood urea nitrogen, serum creatinine, creatinine kinase (CK) and CK MB, myoglobin and renal reduced glutathione (GSH) levels were measured. Histopathological examination of the kidneys was carried out to evaluate the degree of renal injury in each group. The expression of interleukin-1 beta ‘‘IL-1b’’ in renal tissue was detected using immunohistochemistry.Results. – Hypertonic glycerol administration led to severe renal tubular damage with a significant elevation of blood urea nitrogen, serum creatinine, creatinine kinase, CK MB and myoglobin levels and overexpression of IL-1b compared to control group. Valproic acid administration attenuated both the muscle injury and the acute kidney injury induced by hypertonic glycerol, estimated through a significant reduction of creatinine kinase, myoglobin, and serum creatinine. Valproic acid administration caused a significant increase in GSH in the hypertonic glycerol + valproic acid group compared to the hypertonic glycerol group. A significant decrease in tubular necrosis grade, and expression of IL-1b in hypertonic glycerol + valproic acid group compared to the hypertonic glycerol group was observed.Conclusion. – This study demonstrates, for the first time to the best of our knowledge, that valproic acid could ameliorate the rhabdomyolysis and the related acute kidney injury in rats.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

50

Background and aim. – The current study investigated the effects of treatment with 300 mg/kg valproic acid on rhabdomyolysis and acute kidney injury induced by intramuscular injection of hypertonic glycerol in rats.Methods. – Four groups of male wistar rats: control and hypertonic glycerol, valproic acid and valproic acid + hypertonic glycerol treated groups were used. Blood urea nitrogen, serum creatinine, creatinine kinase (CK) and CK MB, myoglobin and renal reduced glutathione (GSH) levels were measured. Histopathological examination of the kidneys was carried out to evaluate the degree of renal injury in each group. The expression of interleukin-1 beta ‘‘IL-1b’’ in renal tissue was detected using immunohistochemistry.Results. – Hypertonic glycerol administration led to severe renal tubular damage with a significant elevation of blood urea nitrogen, serum creatinine, creatinine kinase, CK MB and myoglobin levels and overexpression of IL-1b compared to control group. Valproic acid administration attenuated both the muscle injury and the acute kidney injury induced by hypertonic glycerol, estimated through a significant reduction of creatinine kinase, myoglobin, and serum creatinine. Valproic acid administration caused a significant increase in GSH in the hypertonic glycerol + valproic acid group compared to the hypertonic glycerol group. A significant decrease in tubular necrosis grade, and expression of IL-1b in hypertonic glycerol + valproic acid group compared to the hypertonic glycerol group was observed.Conclusion. – This study demonstrates, for the first time to the best of our knowledge, that valproic acid could ameliorate the rhabdomyolysis and the related acute kidney injury in rats.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025