Image de Google Jackets
Vue normale Vue MARC vue ISBD

Can Collective Emotions Improve Bitcoin Volatility Forecasts?

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2022. Sujet(s) : Ressources en ligne : Abrégé : This paper extends the study of Bourghelle et al. (2022) to check whether collective emotions could help to forecast bitcoin volatility over the period 2018-2021. To this end, we first assess whether consideration of investor sentiment and collective emotions can give us clearer insights into bitcoin dynamics over the period in question and whether they can help to explain the different price fluctuations. Formally, we ran causality tests and, as in Bourghelle et al. (2022), built a two-equation nonlinear vector autoregressive (VAR) model to assess for further lead-lag effects between bitcoin volatility and collective emotions. Second, we proposed in-sample forecasts of bitcoin volatility to test whether our forecasts could be improved by taking investors’ emotions and sentiment into account. Our findings show that market sentiment and investors’ emotions provide useful information that can help to explain fluctuations, structural breaks, and changes in bitcoin volatility. Further, collective emotions improve bitcoin volatility forecasting as our nonlinear model, including emotions-related news, supplants the benchmark linear model. JEL Classification: C20, F10, G10.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

33

This paper extends the study of Bourghelle et al. (2022) to check whether collective emotions could help to forecast bitcoin volatility over the period 2018-2021. To this end, we first assess whether consideration of investor sentiment and collective emotions can give us clearer insights into bitcoin dynamics over the period in question and whether they can help to explain the different price fluctuations. Formally, we ran causality tests and, as in Bourghelle et al. (2022), built a two-equation nonlinear vector autoregressive (VAR) model to assess for further lead-lag effects between bitcoin volatility and collective emotions. Second, we proposed in-sample forecasts of bitcoin volatility to test whether our forecasts could be improved by taking investors’ emotions and sentiment into account. Our findings show that market sentiment and investors’ emotions provide useful information that can help to explain fluctuations, structural breaks, and changes in bitcoin volatility. Further, collective emotions improve bitcoin volatility forecasting as our nonlinear model, including emotions-related news, supplants the benchmark linear model. JEL Classification: C20, F10, G10.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025