Image de Google Jackets
Vue normale Vue MARC vue ISBD

Short-Term Forecasting of French GDP Growth Using Dynamic Factor Models

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2013. Sujet(s) : Ressources en ligne : Abrégé : In recent years, central banks and international organizations have been making ever greater use of factor models to forecast macroeconomic variables. We examine the performance of these models in forecasting French GDP growth over short horizons. The factors are extracted from a large dataset of around one hundred variables including survey balances and real, financial, and international variables. An out-of-sample pseudo real-time evaluation over the past decade shows that factor models provide a gain in accuracy relative to the usual benchmarks. However, the forecasts remain inaccurate before the start of the quarter. We also show that the inclusion of international and financial variables can improve forecasts at the longest horizons.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

13

In recent years, central banks and international organizations have been making ever greater use of factor models to forecast macroeconomic variables. We examine the performance of these models in forecasting French GDP growth over short horizons. The factors are extracted from a large dataset of around one hundred variables including survey balances and real, financial, and international variables. An out-of-sample pseudo real-time evaluation over the past decade shows that factor models provide a gain in accuracy relative to the usual benchmarks. However, the forecasts remain inaccurate before the start of the quarter. We also show that the inclusion of international and financial variables can improve forecasts at the longest horizons.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025